Contents lists available at ScienceDirect

Journal of Nuclear Materials

journal homepage: www.elsevier.com/locate/jnucmat

Structural investigations of borosilicate glasses containing MoO₃ by MAS NMR and Raman spectroscopies

D. Caurant^{a,*}, O. Majérus^a, E. Fadel^a, A. Quintas^a, C. Gervais^b, T. Charpentier^c, D. Neuville^d

^a Laboratoire de Chimie de la Matière Condensée de Paris, UMR-CNRS 7574, Ecole Nationale Supérieure de Chimie de Paris (ENSCP, ParisTech), 11 rue Pierre et Marie Curie, 75231 Paris, France

^b Laboratoire de Chimie de la Matière Condensée de Paris, UMR-CNRS 7574, Université Pierre et Marie Curie, 75252 Paris, France

^c CEA, IRAMIS, Service Interdisciplinaire sur les Systèmes Moléculaires et Matériaux, CEA Saclay, 91191 Gif-sur-Yvette, France

^d Physique des Minéraux et des Magmas, UMR-CNRS 7047, Institut de Physique du Clobe, place Jussieu, 75252 Paris, France

ARTICLE INFO

Article history: Received 26 February 2009 Accepted 22 October 2009

ABSTRACT

High molybdenum concentration in glass compositions may lead to alkali and alkaline-earth molybdates crystallization during melt cooling that must be controlled particularly during the preparation of highly radioactive nuclear glassy waste forms. To understand the effect of molybdenum addition on the structure of a simplified nuclear glass and to know how composition changes can affect molybdates crystallization tendency, the structure of two glass series belonging to the SiO₂-B₂O₃-Na₂O-CaO-MOO₃ system was studied by ²⁹Si, ¹¹B, ²³Na MAS NMR and Raman spectroscopies by increasing MoO₃ or B₂O₃ concentrations. Increasing MoO₃ amount induced an increase of the silicate network reticulation but no significant effect was observed on the proportion of BO_4^- units and on the distribution of Na^+ cations in glass structure. By increasing B₂O₃ concentration, a strong evolution of the distribution of Na⁺ cations was observed that could explain the evolution of the nature of molybdate crystals (CaMoO₄ or Na₂MoO₄) formed during melt cooling.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

Spent nuclear fuel reprocessing generates highly radioactive liquid wastes (HLW) with high Mo concentration that are currently immobilized in borosilicate glass matrices containing both alkali and alkaline-earth elements [1,2]. Because of its high field strength, Mo⁶⁺ cation has a limited solubility in silicate and borosilicate glasses and crystallization of alkali or alkaline-earth molybdates may occur during melt cooling or heat treatment of glasses [3-5]. Indeed, according to EXAFS results giving the average Mo-O distance d(Mo-O) in silicate and borosilicate glasses [1,6-8], the field strength *F* of Mo⁶⁺ cation ($F = 6/d(Mo-O)^2$) ranges between 1.89 and 1.935 \AA^{-2} (Table 1). Consequently, Mo⁶⁺ cation exerts a strong ordering effect on the surrounding oxygen anions and may easily separate from the silicate or borosilicate glassy network combining with other elements such as alkali and alkaline-earth cations to form crystalline molybdates. The crystallization of poorly durable Mo-rich phases such as the complex "yellow phases" containing water soluble alkali molybdates that could incorporate significant amounts of radioactive cesium may thus occur during melt cooling of Mo-rich glass compositions. Consequently, even if Mo is not a radioactive fission product (all the Mo isotopes occurring in HLW solutions are non-radioactive), the formation of these "yellow phases" must be avoided during nuclear glasses preparation because this would lead to waste forms with lower long term performances than homogeneous glasses due to the increase of the leaching rate of the short-lived ¹³⁷Cs and long-lived ¹³⁵Cs radioactive isotopes if the waste forms come into contact with water during storage or disposal. Nevertheless, the higher chemical durability of CaMoO₄ in comparison with alkali molybdates such as Na₂MoO₄ (according to [9] the solubility of Na₂MoO₄ in water is more than three orders of magnitude higher than that of CaMoO₄ at room temperature and (Ca,Sr,Ba)MoO₄ was the phase envisaged to immobilize Mo, Sr and Ba fission products in the multiphase supercalcine ceramics studied in 1970s for HLW conditioning [10]) recently enabled to envisage a glass composite waste form consisting of a vitreous phase as major component with Mo-rich spherical particles – containing CaMoO₄ crystals - dispersed uniformly in the vitreous phase and formed during melt cooling after casting in metallic canisters [11,12]. This waste form - referred to as SUMo2-12c [11] - has been developed to immobilize old waste solutions with high Mo concentration recovered in 1970s after the reprocessing of UMo spent fuel that was used in gas cooled reactors in 1960s in France [11].

In this paper, we present structural results obtained on a simplified glass composition derived from this waste form and belonging to the SiO₂-Na₂O-CaO-B₂O₃-MoO₃ system. In a recent work on

^{*} Corresponding author. Tel.: +33 153767922; fax: + 33 146347489. E-mail address: daniel-caurant@enscp.fr (D. Caurant).

^{0022-3115/\$ -} see front matter © 2009 Elsevier B.V. All rights reserved. doi:10.1016/j.jnucmat.2009.10.059

Table 1 Average distance d(Mo-O) between Mo^{6+} cation and its first oxygen neighbors deduced from Mo–K edge EXAFS experiments performed on Mo-bearing glass compositions belonging to the SiO₂–Na₂O–K₂O [8] and SiO₂–Na₂O [7] systems and on Mo-bearing inactive borosilicate nuclear glasses [1,6]. The field strength *F* defined as $F = Z/d(Mo-O)^2$ with *Z* the cation charge and d(Mo-O) in Å units was calculated. The bond valence S_{Mo-O} (in valence units, v.u.) of the Mo–O bonds was calculated from Mo EXAFS results according to the formula $S_{Mo-O} = \exp[(R_0 - d(Mo-O))/b]$, where R_0 is the bond valence parameter of Mo^{6+} cation $(R_0(Mo^{6+}) = 1.907$ Å) and *b* is a constant (b = 0.37 Å) [40]. The sum of the bond valences $S_{Mo-O} + S_{Si-O}$ of Mo–O and Si–O bonds for hypothetic Mo–O–Si linkages is also given assuming that $S_{Si-O} = 1.10$ v.u. [18].

d(Mo−O) in Å	Field strength in Å ^{–2}	Bond valence (S _{Mo-O}) in v.u.	$S_{Mo-O} + S_{Si-O}$ in v.u.	References
1.78	1.89	1.41	2.51	[1]
1.76	1.935	1.49	2.59	[7]
1.77	1.91	1.45	2.55	[8]
1.76	1.935	1.49	2.59	[6]

this system [5], we showed that glass composition changes can significantly modify the nature and the relative proportions of the molybdate crystals that may form during natural cooling of the melt at 1 °C/min (i.e. at a rate close to the average cooling rate of the bulk of borosilicate nuclear melts in metallic canisters during the first 10 h after casting). For instance, it appeared that CaMoO₄ crystallization tendency increased at the expenses of Na₂MoO₄ when B₂O₃ concentration increased. Thus, by changing glass composition, we showed that it was possible to orientate the glass crystallization tendency towards a more chemically durable phase. We present here structural results on two series of quenched glasses (M_x and B_y series) melted in air and belonging to the previous system using ²⁹Si, ¹¹B, ²³Na MAS NMR and Raman spectroscopies. The effect of increasing MoO₃ concentration on the glass network structure is studied (M_x series). The evolution of the distribution of Na⁺ cations within the borosilicate network is followed when either B_2O_3 (B_y series) or MoO_3 (M_x series) concentrations increases and is discussed according to the evolution of the crystallization tendency of the melt during controlled cooling at 1 °C/ min [5]. Raman spectroscopy is used to follow the evolution of molybdenum environment (present as MoO₄²⁻ units) in glass structure with composition changes.

2. Mo⁶⁺ cations in silicate and borosilicate glasses structure

When silicate and borosilicate glasses are prepared under oxidizing or neutral atmosphere, molybdenum mainly occurred at oxidation state +VI which is the most stable oxidation state of molybdenum in these conditions [3,13-15]. According to Mo EX-AFS and XANES results [1,8,6,7] obtained for silicate and borosilicate glasses containing Mo⁶⁺ cations, these cations would be present in tetrahedral sites as molybdate MoO_4^{2-} entities. Using the average d(Mo-O) distance determined by Mo EXAFS (Table 1) and bond valence considerations [16] derived from Pauling's stability rules [17], it was shown that MoO_4^{2-} entities cannot be directly connected to the silicate network [18]. Indeed, the existence of Mo-O-Si linkages between MoO₄ and SiO₄ tetrahedra would imply that the sum of the bond valences $S_{Mo-O} + S_{Si-O} \approx 2.5-$ 2.6 valence units (v.u.) > 2 v.u. for the oxygen atom between Mo and Si (Table 1) which is not possible according to Pauling's stability rules because in such a situation the oxygen atom would be strongly overbonded. Consequently, the only charge compensating cations that can be found around molybdate entities in silicate glasses structure to stabilize their negative charge should be alkali or alkaline-earth cations (but not silicon or other glass former cations). According to these structural results it can be proposed that in borosilicate glasses, molybdate entities are located in depolymerized regions of the glass structure (i.e. in non-bridging oxygen atoms (NBOs)-rich regions) containing alkali and alkaline-earth cations to compensate their negative charge [1,7] (Fig. 1). The presence of high contents of both molybdenum and alkali or alkalineearth cations in the same regions of the glass structure may explain the rather high crystallization tendency of alkali or alkaline-earth molybdate crystalline phases during melt cooling or heat treatment above the glass transformation temperature. Indeed, the same kind of isolated MoO_4^{2-} tetrahedral entities (Fig. 1) are present for instance in both Na_2MoO_4 (spinel structure, Fig. 2a) and Ca-MoO₄ (scheelite structure, Fig. 2b) phases that can crystallize in nuclear borosilicate glasses. The similarity between the local environment of Mo⁶⁺ cations in glasses and in molybdate crystalline phases may thus explain the low solubility of molybdenum in

Fig. 1. Schematic representation of the structure of a soda-lime borosilicate glass containing molybdenum according both to Mo EXAFS results reported in literature [1,7,18] and to the modified random network model of the structure of modified silicate glasses [41]. In this figure are shown: $(MOQ_4)^{2-}$ entities no directly connected to the borosilicate network but located in depolymerized regions of the glass structure, SiO₄ tetrahedra, BO₄ tetrahedral units that can be charge compensated by Na⁺ or Ca²⁺ cations, BO₃ triangles. Examples of bridging oxygen atoms (BOs) and non-bridging oxygen atoms (NBOs) are shown. The possible presence of Si and B in the neighborhood of MOQ_4^{2-} units – as second neighbors of the Na⁺ or Ca²⁺ cations that charge compensate the molybdate units – is proposed in the figure. DR: depolymerized regions (i.e. regions rich in both NBOs and Na⁺ + Ca²⁺ cations); PR: polymerized regions (i.e. NBOs-poor regions). The dotted lines separate DR and PR regions.

Fig. 2. Structure of Na_2MoO_4 (a) and $CaMoO_4$ (b) crystalline phases. At room temperature (until about 400-460 °C), the stable form of Na₂MoO₄ has a spinel structure $(a_1 = a_2 = a_3)$ in which Mo⁶⁺ cations form tightly bound molecular MoO₄² entities which are bounded to the Na⁺ cations located in octahedral sites. In this structure, the MoO₄²⁻ entities are not directly connected one to another and remain isolated in the Na⁺ cations lattice. CaMoO₄ (powellite) has the tetragonal scheelite (CaWO₄) structure ($a_1 = a_2 \neq c$). In scheelite, Mo⁶⁺ cations also form tightly bound molecular MoO_4^{2-} entities which are bounded to the Ca^{2+} cations (located in 8-fold coordinated sites) in the lattice via relatively weak long-range ionic forces. Similarly to Na_2MoO_4 , in powellite the MoO_4^{2-} entities are not directly connected one to another and remain isolated in the Ca²⁺ cations lattice. Contrary to MoO₄ tetrahedra in Na2MoO4 that are almost perfect (with all (O-Mo-O) angles ~109° [42]), MoO4 tetrahedra in CaMoO₄ are rather distorted. However, CaMoO₄ structure remains stable with temperature (only one allotropic form is reported in molybdates phase diagrams [43,44]) which is not the case for Na₂MoO₄. Blue spheres: Mo⁶⁺ cations. Yellow spheres: Na^+ (a) or Ca^{2+} (b) cations. Red spheres: O^{2-} anions. In the figure, spheres size is not related to ionic radii (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.).

glasses and its tendency to lead to crystallization during cooling of melts or heat treatment of glasses. The fact that Mo^{6^+} cations are far more soluble in phosphate glasses (for instance in the P_2O_5 – MoO_3 system, glasses can be prepared with a MoO_3 concentration ranging from 0 to ~83 mol% [19]) than in silicate glasses could be explained by the fact that molybdenum cations would be mainly

present in six-coordinated environment and would be connected to the phosphate network [19–22].

Let us now consider different spectroscopic methods that can be used to check directly the environment of Mo⁶⁺ cations in glasses. The study of the average Mo-O distances determined by Mo EXAFS spectroscopy of various Mo⁶⁺-bearing silicate and borosilicate glasses shows that d(Mo-O) remains almost constant (1.76– 1.78 Å) whatever the glass composition [1,8,6,7] (Table 1). This observation suggests that Mo EXAFS spectroscopy is probably not sensitive enough to detect the effect of glass composition changes on the environment of molybdenum cations in silicate and borosilicate glasses. In comparison, other techniques such as Raman and ⁹⁵Mo MAS NMR spectroscopies can be very helpful to study the variation of MoO₄²⁻ environment with glass composition. Indeed, these techniques are respectively sensitive to the variation of the molybdate entities vibration frequency and to the variation of the interaction between the nuclear spin associated with ⁹⁵Mo nuclei and their neighborhood.

Concerning Raman spectroscopy, several authors indicated that the frequency of the Mo-O symmetric stretching vibration of MoO_4^{2-} tetrahedral units in crystalline phases was sensitive to their composition [23,24]. Indeed, the existence of a correlation between the Raman stretching frequency $v_{Mo=0}$ of Mo–O bonds and the d(Mo-O) distance in a large number of molybdate crystalline compounds showing that the frequency decreased non linearly with the bond length was reported by Hardcastle and Wachs [24]: v_{Mo-O} in $cm^{-1} = 32,895 exp(-2.073 d(Mo-O))$. Nevertheless, to the best of our knowledge, Raman studies have not yet been reported in literature on Mo-bearing silicate glasses to follow the evolution of the vibration bands associated with molybdate entities by changing glass composition. In the present work performed on Mo-bearing silicate and borosilicate glasses, we show that Raman spectroscopy is sensitive to study the variation of MO_4^{2-} units environment in glass structure.

Concerning ⁹⁵Mo MAS NMR spectroscopy, it is known that ⁹⁵Mo is difficult to detect by NMR because of both its low gyromagnetic ratio in comparison with other nuclei classically studied in oxide glasses (²⁹Si, ²⁷Al, ¹¹B, ³¹P, ²³Na) and its low natural abundance (15.92%). Moreover, as ⁹⁵Mo is a quadrupolar nucleus (I = 5/2), second-order quadrupolar broadening occurs on MAS NMR spectra. Despite these difficulties, it has been recently shown that ⁹⁵Mo MAS NMR can enable to probe directly Mo⁶⁺ cations cations in silicate and borosilicate glasses and may prove useful in understanding the impact of composition changes on glass structure by following the evolution of ⁹⁵Mo chemical shift [25,26]. Nevertheless, in the present paper only Raman spectroscopy was used to study the evolution of molybdenum environment in our glass samples.

3. Glass preparation and characterization methods

Two series of glasses M_x and B_y were prepared for this study, all derived from the following composition (in mol%): 58.2 SiO₂-13.77 Na₂O-9.81 CaO-18.08 B₂O₃ either by increasing MoO₃ concentration from 0 to 5.0 mol% (M_x series with x = 0, 0.87, 1.54, 2.50, 3.62, 5 mol%) or by changing B₂O₃ concentration from 0 to 24 mol% (B_y series with y = 0, 6, 12, 18, 24 mol%) while maintaining a constant MoO₃ concentration (2.50 mol%). For all samples, 0.15 mol% Nd₂O₃ was introduced in the composition both to facilitate ²⁹Si nuclei relaxation during MAS NMR experiments and to perform optical studies not presented in this paper [5]. Glasses were all prepared at 1300 °C in air in Pt crucibles using reagent grade SiO₂, CaCO₃, Na₂CO₃, H₃BO₃, MoO₃ and Nd₂O₃ powders. Depending on glass composition, samples were quenched either as cylinders or disks without annealing [5]. In spite of the high

 B_2O_3 content in the compositions studied in this work no phase separation was detected by SEM for the samples without MoO₃ (M₀ sample). The separation of very small globular particles was only detected when the MoO₃ content exceeds 2.5 mol% [5]. Thus, it appears that in the system studied here the phase separation is only induced by the addition of significant amount of molybdenum oxide. Several borate and silicate reference glass samples whose compositions are given in the captions of Figs. 4 and 7 were also prepared for comparison with M_x and B_y glasses by MAS NMR and Raman spectroscopies. The amorphous character of all samples was checked using both X-ray diffraction (XRD) and Raman spectroscopy. XRD characterization was performed by the help of a Siemens D5000 apparatus operating at Co K_{α} wavelength $(\lambda = 1.778897 \text{ Å})$. Unpolarized Raman spectra were collected at room temperature on a T64000 Jobin-Yvon confocal Raman spectrometer equipped with a CCD detector cooled by nitrogen. The 488 nm line of a Coherent 70 Ar⁺ laser was used as the excitation source

²⁹Si, ¹¹B and ²³Na MAS NMR spectra were recorded respectively at 59.63, 128.28 and 132.03 MHz. Chemical shifts were determined relative to tetramethylsilane for ²⁹Si, liquid BF₃OEt₂ for ¹¹B and a 1.0 M aqueous NaCl solution for ²³Na. The ²³Na MAS NMR data were processed using a homemade program to fit the spectra by taking into account the effects of the parameter distribution for both the quadrupolar interaction and the isotropic chemical shift, as described in [27]. In this case, very satisfactory results were obtained using a Gaussian isotropic model for the quadrupolar interaction [28,29] and a normal distribution for the isotropic chemical shift. This fitting procedure provides the mean value of the isotropic chemical shift δ_{iso} and the mean value of the quadrupolar coupling parameter Pq.

For all glasses, ESR was used to investigate the occurrence of paramagnetic Mo⁵⁺ (4d¹) or Mo³⁺ (4d³) cations and spectra were recorded at X band (9.5 GHz) between 20 and 300 K. For all glasses of M_x and B_y series, ESR spectra revealed the existence of a signal due to molybdenum centered near $g \sim 1.913$ and detected from 20 K to room temperature (Fig. 3a). No signal associated with Mo^{3+} (4d³) cations near g ~ 5.19 was observed [7.30]. The characteristics of the ESR signal indicated that it could be attributed to Mo⁵⁺ cations located in low symmetry sites as the spin-lattice relaxation time of d¹ ions is known to increase with site distortion enabling to detect their ESR signals at high temperature [31]. The presence of a small intensity hyperfine structure on EPR spectra (Fig. 3a), that can be attributed to the contribution of ⁹⁵Mo and ⁹⁷Mo isotopes with nuclear spin I = 5/2, confirmed that the signal at g = 1.913 was due to molybdenum and no to other paramagnetic impurities. Moreover, the nearly linear intensity increase of the EPR signal with MoO_3 content in M_x glasses (Fig. 3b) also confirmed that the spectrum was due to molybdenum. It is also interesting to note that, as no evolution of the linewidth of the EPR signal (\sim 28 G) was observed with increase in MoO₃ concentration even for the highest concentrated samples (5 mol% MoO₃), the magnetic interactions between paramagnetic molybdenum cations remain small. This indicates that Mo⁵⁺ cations are diluted rather than aggregated in the glassy network. The proportion of Mo⁵⁺ cations (over all molybdenum) ranges between 0.4% and 0.8% for all the glasses studied in this work as estimated using a DPPH sample as concentration standard. Consequently, the majority of molybdenum (>99%) occurs as Mo⁶⁺ cations in all glasses of the M_x and B_y series prepared in this study (oxidizing conditions). Thus, according to Mo EXAFS and XANES results published in literature on silicate and borosilicate glasses [1,7,8] and to bond valence considerations [16], it can be assumed that the majority of molybdenum cations in our glasses are present as tetrahedral MoO_4^{2-} molybdate entities in modifiers-rich (i.e. depolymerized) regions

Fig. 3. EPR spectrum (a) of Mo⁵⁺ cations in M_{2.5} glass (2.5 mol% MoO₃) recorded at room temperature (*X*-band, 9.51 GHz). The intense EPR signal centered near *g* = 1.913 arises from the even Mo isotopes (*I* = 0, natural abundance 74.62%) and the smaller lines detected at lower magnetic field (between 3200 and 3400 G in the figure) arise from the hyperfine structure from odd ⁹⁵Mo (*I* = 5/2, natural abundance 15.78%) and ⁹⁷Mo (*I* = 5/2, natural abundance 9.60%) isotopes. The evolution of the global intensity (obtained by double integration of the EPR signal) versus MoO₃ concentration (in wt.%) for all glasses of the M_x series is shown in (b) with a linear fit.

of the glass structure and are not linked directly to the silicate network (Fig. 1).

4. Structural evolution of glasses with increasing MoO₃ concentration

Raman spectra confirms the XRD results presented in [5] showing that the solubilty limit of molybdenum in M_x glasses was reached between 1.54 and 2.5 MoO₃ mol%. Indeed, Fig. 4 clearly reveals the occurrence of the contribution of CaMoO₄ (powellite)

Fig. 4. Normalized Raman spectra of $M_{0.87}$, $M_{1.54}$, $M_{2.5}$, $M_{3.62}$ and M_5 glasses. The spectra of a CaMoO₄ (powellite) ceramic sample and of two reference sodium silicate and calcium silicate glasses containing molybdenum and referred respectively to as SiNaMo (69.34SiO₂-28.09Na₂O-2.43MoO₃-0.15Nd₂O₃ in mol%) and SiCaMo (58.89SiO₂-40.15CaO-0.82MOO₃-0.15Nd₂O₃ in mol%) are also given for comparison. *: Vibration bands due to CaMoO₄ crystals in M_x samples. For the M_5 sample, XRD revealed the presence of a low amount of small γ -Na₂MoO₄ crystals [5] whose contribution is not observed on the Raman spectra. The dotted line is a guide for the eye to follow the evolution of the maximum of the band associated with molybdates entities in glasses. Spectra have not been corrected for temperature and frequency dependent scattering intensity [45].

Raman vibration modes when x > 1.54 mol% (i.e. 3.5 wt.%). For comparison, the Raman spectrum of a powellite ceramic sample is given with bands attribution according to [32]. All the CaMoO₄ vibration bands with frequency \ge 321 cm⁻¹ correspond to internal vibrational modes of MoO_4^{2-} tetrahedra and the strongest band A_g at 879 cm⁻¹ is associated with the symmetric stretching vibration of Mo-O bonds. By analogy, we propose that the wide and intense band observed in the 898–913 cm⁻¹ range of the Raman spectra for all glasses of M_x series (and also for those of the B_v series) is also due to the symmetric stretching vibration of Mo-O bonds of molybdate tetrahedra within the glass structure. We saw above that Hardcastle and Wachs [24] reported an empirical correlation between the Raman stretching frequency of Mo-O bonds and the d(Mo-O) bond length for several crystalline molybdates showing the sensitivity of this frequency to MoO₄²⁻ environment. Nevertheless, other authors [33] indicated that the energy of the Raman Mo–O stretching frequency also depended on MoO_4^{2-} tetrahedra distortion in crystalline samples. Thus, it seems difficult to simply correlate the shift of the Raman band with MoO₄²⁻ tetrahedra structural parameters for the glasses studied in this work. Nevertheless, Fig. 4 clearly demonstrates that this band shifted towards lower frequencies when x increases ($x \ge 2.5 \text{ mol}\%$) which shows that the environment and/or the symmetry of MoO_4^{2-} tetrahedra in the glass is modified when crystallization of powellite is detected (x > 1.54 mol%). For comparison, spectra of two reference glasses belonging to the $SiO_2-Na_2O-MoO_3$ (SiNaMo glass) and SiO_2- CaO-MoO₃ (SiCaMo glass) systems and for which all the MoO_4^{2-} entities are charge compensated by Na⁺ and Ca²⁺ cations respectively are also shown in Fig. 4. For these two glasses, the frequency of the symmetric stretching vibration of Mo-O bonds of molybdate tetrahedra are significantly different: SiNaMo (902 cm⁻¹), SiCaMo (922 cm^{-1}) . This shows that Raman spectroscopy is sensitive to the nature of the cations that charge compensate molybdate entities in silicate glasses. The band shift towards lower energies observed in Fig. 4 when MoO₃ content increases could thus indicate that the proportion of MoO_4^{2-} tetrahedra charge compensated by Na⁺ cations increases with x at the expenses of MoO_4^{2-} tetrahedra charge compensated by Ca²⁺ cations when CaMoO₄ begun to crystallize. This evolution could be explained by an increase of the Na/ Ca ratio in the modifiers-rich regions of glass structure when powellite is formed. For M_{0.87} and M_{1.54} glasses, the maximum of the Mo–O symmetric stretching band (913 cm^{-1}) is intermediate between that of the two reference glasses suggesting that when x < 2.5 mol%, MoO₄²⁻ tetrahedra are charge compensated both by Na⁺ and Ca²⁺ cations.

²⁹Si MAS NMR spectra were all simulated with the DMFIT program [34] using three bands centered at -80.0, -92.2 and -103.6 ppm respectively attributed to Q₂, Q₃ and Q₄ units (Q_n units with n = 0-4 correspond to SiO₄ tetrahedra with n bridging oxygen atoms). An example of curve-fitting is shown in Fig. 5a and the evolution of the relative proportions $[Q_n]$ of Q_n units is shown in Fig. 5b. This evolution reveals that $[Q_2]$ and $[Q_3]$ decrease whereas [Q4] increases when molybdenum concentration increases in samples of the M_x series. When MoO_3 content increases from 0 to 5 mol% the proportion of Q₄ units increases of more than 20% (Table 2). The observation of a slight increase of the intensity of Q₄ units contribution on Raman spectra near 1100–1200 cm⁻¹ between M_0 and M_5 samples (spectra not shown) confirmed $^{29}\mbox{Si}$ NMR results. For the M_x series, ¹¹B MAS NMR spectra simulation only shows a slight and no monotonous decrease of the relative proportion of BO_4^- units when molybdenum concentration increases. The variation of the proportion of BO_4^- units is only about 2-4% (Table 2). Consequently in M_x glasses, MoO₃ acts as a reticulating agent for the silicate network and it mainly acts on the amount of Q₃ units (Table 2). This result can be explained as follows. As molybdenum is introduced as MoO₃ (corresponding to

Fig. 5. (a) Example of ²⁹Si MAS NMR spectra recorded for the M_0 sample. The corresponding simulation using three Gaussian line shape contributions associated with Q_2 , Q_3 and Q_4 units is shown (exp: experimental spectrum, sim: simulated spectrum). The same chemical shift values were used for the spectra simulation of all the samples of M_x and B_y series. (b) Evolution of the relative proportions of Q_4 , Q_3 and Q_2 units in M_x samples with the increase of MoO₃ concentration. Linear fits of Q_n evolution are shown.

Table 2

Relative proportions of Q_n units (n = 2, 3, 4) and of BO₃ and BO₄⁻ units in M_x samples determined after simulation and integration of ²⁹Si and ¹¹B MAS NMR spectra with the DMFIT program [34]. For a constant number of moles of SiO₂ (58.2 in M_0 composition), the number of moles of Mo⁶⁺ cations (n_{Mo}) and Q₃ units (n_{Q_3}) is reported for all M_x samples. The number of moles of Q₃ units that disappeared ($|\Delta n_{Q_3}|$) when x increased (in comparison with M_0 glass) is also reported.

	M ₀	M _{0.87}	M _{1.54}	M _{2.50}	M _{3.62}	M_5
% Q4	43	46.2	49.2	55.2	58.8	64.8
% Q₃	53.6	52.2	48.0	42.0	39.8	34.5
% Q2	3.4	2.6	2.8	2.8	1.4	0.7
n_{Q_3}	31.19	30.38	27.93	24.44	23.16	20.08
n _{Mo}	0	0.87	1.56	2.56	3.75	5.26
$ \Delta n_{Q_3} $	-	0.81	3.26	6.75	8.03	11.11
$2n_{Mo}$	0	1.74	3.12	5.12	7.5	10.52
% BO ₃	46.0	43.8	46.4	47.8	49.7	47.8
% BO ₄	54.0	56.2	53.6	52.3	50.3	52.3
$[BO_4]/[BO_3]$	1.17	1.28	1.15	1.09	1.01	1.09

one Mo⁶⁺ cation and three NBOs) in glass batch whereas Mo⁶⁺ cations are known to occur as MOO_4^{2-} units (corresponding to one Mo^{6+} cation and four NBOs) both in glass structure and in powellite crystals, each Mo⁶⁺ cation introduced in the composition needs to catch one NBO more from the borosilicate network. We thus propose the following reaction scheme between MoO₃ and Q₃ units (initially charge compensated by Na⁺ or Ca²⁺ cations) in the melt:

$$MoO_3 + (2Q_3, \ Ca^{2+} \ or \ 2Na^+) \rightarrow (MoO_4^{2-}, \ Ca^{2+} \ or \ 2Na^+) + 2Q_4.$$
(1)

For a constant number of moles of SiO₂ (58.2 in M₀ composition), the number of moles of Mo⁶⁺ cations (n_{Mo}) and Q₃ units (n_{Q_3}) was calculated for all M_x samples and is reported in Table 2. The comparison of $|\Delta n_{Q_3}|$ (the number of moles of Q₃ units that have disappeared in M_x sample in comparison with M₀ sample) with $2n_{Mo}$ (see Eq. (1)) shows that the values of $|\Delta n_{Q_3}|$ and $2n_{Mo}$ remains close to each other when the amount of MoO₃ increases in glass composition which seems to confirm the reaction scheme (1).

Experimental and simulated ²³Na MAS NMR spectra of glasses of the M_x series are shown in Fig. 6a and the evolution of the mean isotropic chemical shift (δ_{iso}) and quadrupolar coupling parameter (P_Q) deduced from spectra simulation is shown in Fig. 7. As ²³Na NMR parameters δ_{iso} and P_Q are very sensitive to sodium environment both in glass and crystalline structures [35], the fact that the

Fig. 6. ²³Na MAS NMR spectra of glasses of M_x (a) and B_y (b) series (solid lines: experimental spectra, dashed lines: simulated spectra). The evolution of the mean isotropic chemical shift (δ_{iso}) and quadrupolar coupling parameter (P_Q) deduced from spectra simulation is shown in Fig. 7.

Fig. 7. Evolution of the mean isotropic chemical shift (δ_{iso}) and quadrupolar coupling parameter (P_Q) of ²³Na in samples of B_y (\bullet) and M_x (∇) series deduced from the simulation of the spectra of Fig. 6. For comparison the values of δ_{iso} and P_Q of reference glasses (\bigcirc) are also shown (compositions in mol%): SiNa (80.93SiO₂–19.07Na₂O), SiNaCa (71.21SiO₂–16.78Na₂O–12CaO), B0.7Na (58.8P₂O₃–41.2Na₂O), SiNaMo (69.34SiO₂–28.09Na₂O–2.43MoO₃–0.15Nd₂O₃), B0.2Na (83.3B₂O₃–16.7Na₂O). In the four former reference glasses, Na⁺ cations can compensate NBO whereas in B0.2Na glass Na⁺ cations only compensate bridging oxygen atoms near BO⁻₄ units.

mean δ_{iso} (~-7.83 ppm) and Pq (~2.74 MHz) parameters remains almost constant when *x* increases (Fig. 7) shows that the mean environment of the majority of Na⁺ cations does not change when molybdenum content increases. BO₄⁻ entities being preferentially charge compensated by Na⁺ cations rather than by Ca²⁺ cations in borosilicate glasses [36], it can be deduced from ¹¹B NMR results (Table 2) and M_x glasses composition that about 70% of all the Na⁺ cations could act as charge compensator near boron whereas the remaining Na⁺ cations would be located near NBO or would charge compensated a fraction of the MoO_4^{2-} tetrahedra. This could explain why the majority of sodium cations are not affected by increasing MoO₃ content.

In [5] we showed that CaMoO₄ was the only molybdate phase that crystallized during controlled cooling of the melt at 1 °C/min for compositions of the M_x series for which $x > 3.5 \text{ mol}\% \text{ MoO}_3$ whereas both CaMoO₄ and Na₂MoO₄ phases were detected in the quenched glass samples (cylinders and disks) when x = 10.9 mol%MoO₃. The fact that Na₂MoO₄ did not crystallize during slow cooling of M_x samples from the melting to room temperature is probably due to the high B₂O₃ and CaO contents in their composition (respectively higher than 17 and 9 mol%). Indeed, because of both the preferential charge compensation of BO₄⁻ units by Na⁺ cations [36] and the relatively high CaO content in our glass compositions (in comparison for instance with the composition studied by Calas et al. [1] and for which Na_2MoO_4 is expected to crystallize during cooling of the melt), the high local Ca/Na concentration ratio of Ca²⁺ and Na⁺ cations around molybdate entities (Fig. 1) would favorize CaMoO₄ crystallization. The fact that a small amount of Na₂₋ MoO₄ crystallized simultaneously with CaMoO₄ during rapid cooling of the $M_{10.9}$ melt but not during slow cooling at 1 °C/min [5] can be explained using the considerations developed by Calas et al. [1] on the temperature-induced coordination changes of boron: the boron partially changes from BO₄ to BO₃ coordination with increasing temperature. In this case, because of the preferential charge compensation of $(BO_4)^-$ units by Na⁺ cations, during quenching of the M_{10.9} melt the amount of Na⁺ cations available to charge compensate molybdate entities (Fig. 1) would be higher (and thus also the local Na/Ca concentration ratio around molybdate entities) than during slow cooling and both CaMoO₄ and Na₂₋ MoO₄ may crystallize.

5. Structural evolution of glasses with increasing $B_2 O_3 \ \ concentration$

In [5] we showed that Na₂MoO₄ crystallization tendency during slow cooling of the melt (1 °C/min) decreased by increasing B₂O₃ concentration whereas the tendency of CaMoO₄ to crystallize increased. Such an evolution could be explained by the preferential charge compensation of BO₄⁻ units by Na⁺ [36]. Indeed, for B_y series, Fig. 8 shows that $[BO_4^-]/[SiO_2]$ concentrations ratio increases whereas $[Na^+]/[BO_4^-]$ concentrations ratio decreases with B₂O₃

Fig. 8. Evolution of $[BO_4^-]/[SiO_2]$ and $[Na^+]/[BO_4^-]$ concentrations ratios versus B_2O_3 content in B_y samples (in mol%). $[Na^+]$ and $[SiO_2]$ concentrations were determined by chemical analysis whereas $[BO_4^-]$ concentration was determined using both chemical analysis and ¹¹B MAS NMR.

Fig. 9. XRD patterns of B_y quenched disk samples. P: CaMoO₄ (powellite).

concentration and it is interesting to notice that for the B₂₄ sample almost all Na⁺ cations can act as charge compensator of BO₄⁻ units ([Na⁺]/[BO₄⁻] ~ 1). In these conditions, the amount of Na⁺ cations able to compensate MOO₄²⁻ entities strongly decreases when B₂O₃ concentration increases and the [Ca²⁺]/[Na⁺] concentrations ratio in depolymerized regions of glass structure (Fig. 1) increases which could explain the evolution of the crystallization tendency [5]. We recently confirmed this explanation by studying directly the effect on the crystallization behavior during melt cooling of changing the Ca/Na concentration ratio around MOO₄²⁻ entities by changing the concentration ratio *Z* = [CaO]/([CaO] + [Na₂O]) from 0 (calcium-free sample) to 0.5 (sample with as much CaO as Na₂O) for another Mobearing soda-lime borosilicate glass composition 64.76 SiO₂-10.48 B₂O₃-13.68 Na₂O-8.43 CaO-2.5 MOO₃ (in mol%) [37].

Fig. 7 shows that δ_{iso} and Pq ²³Na NMR parameters significantly decreases when B₂O₃ concentration increases. Thus, contrary to the M_x series, the distribution of Na⁺ cations through the glassy network significantly changes when increasing amounts of boron are introduced in B_y glasses. The comparison of δ_{iso} and Pq parameters of B_y glasses with those of sodium silicate (SiNa), sodium calcium silicate (SiNaCa), SiNaMo and two borate (B0.2Na, B0.7Na) reference glasses clearly reveals that when B₂O₃ concentration increases, Na⁺ cations moves from a position near NBO to a position near BO₄⁻ units as charge compensator inducing both an increase of the d(Na–O) distance and a decrease of Pq because of the decrease of the local negative charge on oxygen atoms in the neighborhood of Na⁺ cations. Indeed, in silicate and borate crystalline phases containing sodium, the decrease of $\delta_{iso}(^{23}Na)$ is known to be correlated with the increase of d(Na–O) [35,38,39].

In agreement with the XRD results obtained for the B_y quenched disk samples (Fig. 9), Raman spectra of the same samples show

Fig. 10. Evolution of Raman spectra of B_y samples. For comparison the spectra of SiNaMo and SiCaMo reference glasses are also shown. *: Vibration bands due to CaMoO₄ crystals in B_y samples. Spectra have not been corrected for temperature and frequency dependent scattering intensity [45].

that the crystallization of CaMoO₄ is also detected when y > 12 mol% (Fig. 10). Contrary to Raman spectra of samples of the M_x series (Fig. 4), the position of the band associated with the Mo–O symmetric stretching vibration only slightly varies when B₂O₃ concentration increases which indicates that the mean environment of MOO₄^{2–} entities is only slightly modified and remains charge compensated both by Na⁺ and Ca²⁺ cations. This result could be explained by the fact that the depolymerized regions in which are located MOO₄^{2–} entities (Fig. 1) become progressively depleted both in sodium (because of the charge compensation of BO₄⁻ units by Na⁺ cations, Fig. 8) and in calcium (because of CaMoO₄ crystallization, Fig. 9).

6. Conclusion

The structural study of two series of $SiO_2-B_2O_3-Na_2O-CaO-MoO_3$ glasses prepared by increasing either MoO_3 or B_2O_3 contents reveals two main points. The introduction of increasing MoO_3 contents induces an increase of the proportion of Q_4 units showing that this oxide acts as a reticulating agent on the silicate network whereas both the proportion of BO_4^- units and the distribution of Na⁺ cations are not significantly modified. The introduction of increasing B_2O_3 amounts strongly modifies the distribution of Na⁺ cations within the glass network which could explain the evolution of the nature of molybdates that can crystallize during melt cooling (CaMoO_4 at the expense of Na_2MoO_4 [5]).

Acknowledgments

The authors gratefully acknowledge M. Magnin (CEA Marcoule, France) for the preparation and the recording of the Raman spectrum of SiCaMo reference glass.

References

- [1] G. Calas, M. Le Grand, L. Galoisy, D. Ghaleb, J. Nucl. Mater. 322 (2003) 15-20.
- [2] D. Caurant, P. Loiseau, O. Majérus, V. Aubin-Chevaldonnet, I. Bardez, A. Quintas, Glasses, Glass-Ceramics and Ceramics for Immobilization of Highly Radioactive Nuclear Wastes, Nova Science Publishers., Hauppauge, New York (USA), 2009.
- [3] R.J. Short, R.J. Hand, N.C. Hyatt, Mater. Res. Soc. Symp. Proc. 757 (2003) 141– 146.
- [4] C. Cousi, F. Bart, J. Phallipou, J. Phys. IV France 118 (2004) 79-83.
- [5] D. Caurant, O. Majérus, E. Fadel, M. Lenoir, C. Gervais, O. Pinet, J. Am. Ceram.
- Soc. 90 (2007) 774-783. [6] R.J. Short, R.J. Hand, N.C. Hyatt, G. Möbus, J. Nucl. Mater. 340 (2005) 179-186.
- [7] F. Farges, R. Siewert, G.E. Brown, A. Guesdon, G. Morin, Can. Mineral. 44 (2006) 731–753.
- [8] N. Sawaguchi, T. Yokokawa, K. Kawamura, Phys. Chem. Glasses 37 (1996) 13– 18.
- [9] J. Aubry, D. Burnel, C. Gleitzer, in: Masson (Ed.), Compléments au nouveau traité de Chimie Minérale, Molybdène, vol. 5, Paris, France, 1976, pp. 78–113.
- [10] G.J. McCarthy, J.G. Pepin, D.E. Pfoertsch, D.R. Clarke, Ceramics in nuclear waste management. in: Proceedings of an International Symposium. Cincinnati, April 1979, pp. 315–320.
- [11] R. Do Quang, V. Petitjean, F. Hollebecque, O. Pinet, T. Flament, A. Prod'homme, Waste Management 2003 Symposium, Tucson, AZ, E-text: <www.wmsym.org/ abstracts/2003/pdfs/92.pdf>.
- [12] N. Henry, P. Deniard, S. Jobic, R. Brec, C. Fillet, F. Bart, A. Grandjean, O. Pinet, J. Non-Cryst. Solids 333 (2004) 199–205.
- [13] R.J. Short, R.J. Hand, N.C. Hyatt, Mater. Res. Soc. Symp. Proc. 807 (2004) 169– 174.
- [14] A. Horneber, B. Camara, W. Lutze, Mater. Res. Soc. Symp. Proc. 11 (1982) 279– 288.
- [15] B. Camara, W. Lutze, J. Lux, in: C.J.M. Northrup (Ed.), Scientific Basis for Nuclear Waste Management II, Plenum Press, New York, 1979, pp. 93–102.
- [16] I.D. Brown, R.D. Shannon, Acta Crystallogr. A A29 (1973) 266.
- [17] L. Pauling, J. Am. Chem. Soc. 51 (1929) 1010.
- [18] L. Galoisy, L. Cormier, S. Rossano, A. Ramos, G. Calas, P. Gaskell, M. Le Grand, Mineral. Mag. 64 (2000) 207–222.
- [19] B. Bridge, N.D. Patel, J. Mater. Sci. 21 (1986) 1187-1205.
- [20] S. Muthupari, G.U. Kulkarni, K.J. Rao, Bull. Mater. Sci. 17 (1994) 1029–1037.
- [21] A. Kuzmin, J. Purans, J. Phys. IV France 7 (1997). C2-971-C2-973.
- [22] G. Poirier, F.S. Ottoboni, LNSL 2007 Activity Report. (<http://www.lnls.br/ ar2007/web/>).

- [23] F.A. Cotton, M. Wing, Inorg. Chem. 4 (1965) 867-873.
- [24] F.D. Hardcastle, I.E. Wachs, J. Raman Spectrosc. 21 (1990) 683-691.
- [25] S. Kroeker, I. Farnan, S. Schuller, T. Advocat, Mater. Res. Symp. Proc. 1124 (2009) 153–159.
- [26] M. Magnin, S. Schuller, D. Caurant, O. Majérus, D. de Ligny, C. Mercier, in: A. Cozzi, T. Ohji (Eds.), Ceramic Transactions, vol. 207, The American Ceramic Society, Wiley, 2009, pp. 59–68.
- [27] F. Angeli, M. Gaillard, P. Jollivet, T. Charpentier, Chem. Phys. Lett. 440 (2007) 324–328.
- [28] B. Bureau, G. Silly, J.Y. Buzaré, C. Legein, D. Massiot, Solid State Nucl. Magn. Res. 14 (1999) 181–190.
- [29] G. Czjzek, J. Fink, F. Götz, H. Schmidt, J.M. Coey, J.P. Rebouillat, A. Liénard, Phys. Rev. B 23 (1981) 2513–2530.
- [30] R.J. Landry, J. Chem. Phys. 48 (1968) 1422-1423.
- [31] V. Aubin-Chevaldonnet, D. Gourier, D. Caurant, S. Esnouf, T. Charpentier, J.M. Costantini, J. Phys. Condens. Matter 18 (2006) 4007–4027.
- [32] E. Sarantopoulou, C. Raptis, S. Ves, D. Christofilos, G.A. Kourouklis, J. Phys. Condens. Matter 14 (2002) 8925–8938.
- [33] V.P. Mahadevan Pillai, T. Pradeep, M.J. Bushiri, R.S. Jayasree, V.U. Nayar, Spectrochim. Acta A 53 (1993) 867–876.

- [34] D. Massiot, F. Fayon, M. Capron, I. King, S. Le Calvé, B. Alonso, J.-O. Durand, B. Bujoli, Z. Gan, G. Hoatson, Magn. Reson. Chem. 40 (2002) 70–76.
- [35] F. Angeli, T. Charpentier, P. Faucon, J.C. Petit, J. Phys. Chem. B 103 (1999) 10356–10364.
- [36] A. Quintas, T. Charpentier, O. Majérus, D. Caurant, J.L. Dussossoy, P. Vermaut, Appl. Magn. Reson. 32 (2007) 613–634.
- [37] M. Magnin, S. Schuller, F. Angeli, D. Caurant, O. Majérus, D. de Ligny, in: Proceedings of the International Conference Global 2009, Paris, France, 6–11 September, 2009, paper 9288.
- [38] A.M. George, S. Sen, J.F. Stebbins, Solid State Nucl. Magn. Reson. 10 (1997) 9–17.
 [39] K.J.D. Mackenzie, M.E. Smith, Multinuclear Solid-State NMR of Inorganic
- Materials, Pergamon Materials Series, Elsevier Science, Oxford UK, 2002. [40] (a) I.D. Brown, D. Altermatt, Acta Crystallogr. B 41 (1985) 240–244;
- (b) I.D. Brown, D. Altermatt, Acta Crystallogr. B 41 (1985) 244-247.
- [41] G.N. Greaves, S. Sen, Adv. Phys. 56 (2007) 1-166.
- [42] K.G. Bramnik, H. Ehrenberg, Z. Anorg. Allg. Chem. 630 (2004) 1336-1341.
- [43] Y.G. Petrosyan, E.V. Tkachenko, V.M. Zhukovskii, Neorg. Mater. 11 (1975) 1618-1621.
- [44] T.M. Yanushkevich, V.M. Zhukovskii, Zh. Neorg. Khim. 18 (1973) 2234-2237.
- [45] D.R. Neuville, B.O. Mysen, Geochim. Cosmochim. Acta 60 (1996) 1727-1737.